CHAPTER 12. CONCLUSIONS: PRESENT AND FUTURE OF SOUTHERN OCEAN BIOGEOGRAPHY.


THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN


The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosystem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems).

Edited by:
Claude De Broyer (Royal Belgian Institute of Natural Sciences, Brussels)
Philippe Koubbi (Université Pierre et Marie Curie, Paris)
Huw Griffiths (British Antarctic Survey, Cambridge)
Ben Raymond (Australian Antarctic Division, Hobart)
Cédric d’Udekem d’Acoz (Royal Belgian Institute of Natural Sciences, Brussels)
Anton Van de Putte (Royal Belgian Institute of Natural Sciences, Brussels)
Bruno Danis (Université Libre de Bruxelles, Brussels)
Bruno David (Université de Bourgogne, Dijon)
Susie Grant (British Antarctic Survey, Cambridge)
Julian Gutt (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven)
Christoph Held (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven)
Graham Hosie (Australian Antarctic Division, Hobart)
Falk Huettmann (University of Alaska, Fairbanks)
Alix Post (Geoscience Australia, Canberra)
Yan Ropert-Coudert (Institut Pluridisciplinaire Hubert Curien, Strasbourg)

Published by:
The Scientific Committee on Antarctic Research, Scott Polar Research Institute, Lensfield Road, Cambridge, CB2 1ER, United Kingdom (www.scar.org).

Publication funded by:
- The Census of Marine Life (Albert P. Sloan Foundation, New York)
- The TOTAL Foundation, Paris.

The “Biogeographic Atlas of the Southern Ocean” shared the Cosmos Prize awarded to the Census of Marine Life by the International Osaka Expo’90 Commemorative Foundation, Tokyo, Japan.

Publication supported by:
- The Belgian Science Policy (Belspo), through the Belgian Scientific Research Programme on the Antarctic and the “biodiversity.aq” network (SCAR-MarBIN/ANTABIF)
- The Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
- The British Antarctic Survey (BAS), Cambridge, United Kingdom
- The Université Pierre et Marie Curie (UPMC), Paris, France
- The Australian Antarctic Division, Hobart, Australia
- The Scientific Steering Committee of CAML, Michael Stoddart (CAML Administrator) and Victoria Wadley (CAML Project Manager)

Mapping coordination and design: Huw Griffiths (BAS, Cambridge) & Anton Van de Putte (RBINS, Brussels)
Editorial assistance: Henri Robert, Xavier Loréa, Charlotte Havermans, Nicole Moortgat (RBINS, Brussels)
Printed by: Altitude Design, Rue Saint Josse, 15, B-1210 Brussels, Belgium (www.altitude-design.be)
Lay out: Sigrid Camus & Amélie Blaton (Altitude Design, Brussels).
Cover design: Amélie Blaton (Altitude Design, Brussels) and the Editorial Team.

Cover pictures: amphipod crustacean (Epimeria rubrieques De Broyer & Klages, 1991), image © T. Riehl, University of Hamburg; krill (Euphausia superba Dana, 1852), image © V. Siegel, Institute of Sea Fisheries, Hamburg; fish (Chaenocephalus sp.), image © C. d’Udekem d’Acoz, RBINS; emperor penguin (Aptenodytes forsteri) G.R. Gray, 1844), image © C. d’Udekem d’Acoz, RBINS; Humpback whale (Megaptera novaengliae (Borowski, 1781)), image © L. Kindermann, AWI.

Online dynamic version:
A dynamic online version of the Biogeographic Atlas will be available on the SCAR-MarBin / AntaBIF portal: atlas.biodiversity.aq.

Recommended citation:
For the volume:

For individual chapters:


This publication is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
12. Conclusions: Present and Future of Southern Ocean Biogeography

Philippe Koubbi1, Claude De Broyer2, Huw Griffiths3, Ben Raymond4,5, Cédric d’Udekkem d’Acoz6, Anton Van de Putte2, Bruno Danis3, Bruno David2, Susie Grant3, Julian Gutt7, Christoph Held2, Graham Hosie4, Falk Huettmann8, Alix Post9, Yan Rupert-Coudert10, Michael Stoddart5, Kerrie M. Swadling5, Victoria Wadley4

1 Sorbonne Universités. UMR BOREA 7208, Université Pierre et Marie Curie, Museum national d’histoire naturelle, Paris, France
2 Royal Belgian Institute of Natural Sciences, Brussels, Belgium
3 Australian Antarctic Survey, Cambridge, UK
4 Australian Antarctic Division, Hobart, Australia
5 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
6 Université Libre de Bruxelles, Brussels, Belgium
7 Université de Bourgogne, UMR CNRS Biogéosciences, Dijon, France
8 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
9 University of Alaska, Fairbanks, USA
10 Australian Museum, Sydney, New South Wales, Australia
11 Institut Pluridisciplinaire Hubert Curien, Strasbourg, France

1. Introduction

The evolution of patterns in biodiversity, from genes to ecosystems, was the key topic of the Census of Antarctic Marine Life (CAML). CAML was the most successful comprehensive, multinational and multidisciplinary survey of Antarctic biota ever conducted (Chapter 1.2). It used standardised methodologies, both traditional and contemporary, for sampling and identifying specimens and also for managing and analysing data. This sampling effort added important new data on the presence of species to the online data portal SCAR-MarBIN (Scientific Committee on Antarctic Research - Marine Biodiversity Information Network MarBIN) and to the Biodiversity of Life project. The compilation of these two data sets required the contribution of hundreds of taxonomists. These experts identified the substantial amount of specimens collected and revisited, with morphological and molecular techniques, the systematic classification of different taxa, in some cases providing new phylogenies.

The Biogeographic Atlas of the Southern Ocean has gathered scientists together to update our understanding of distributional patterns of biota in the Southern Ocean, which was previously based on publications such as the Antarctic Map Folio Series (Bushnell, 1964-1972) that included the zoogeographical classification of Hedgpeth (1969) (Chapter 1.1.). For the new Bio geographic Atlas, experts verified and used SCAR MarBIN data, along with results from CAML surveys and authenticated historical data. Some data, as yet unpublished, were contributed by different institutes and museums, and also by CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) and the IWC (International Whaling Commission), to create presence maps of the different taxa: benthos (Part 5), pelagic and sea-ice biota (Part 6), fish (Part 7) and birds and mammals (Part 8).

Other similar initiatives exist in other oceans or globally (Part 1), demonstrating that marine macroecology is becoming an important topic for understanding how environmental changes will modify species biogeography. Due to the dynamic characteristics, as well as its history, the Southern Ocean can be regarded as a natural laboratory to explore biogeographic patterns and processes (Part 10), evolutionary patterns and ecological and adaptive processes operating in relatively extreme conditions that were not frequently experienced during the last 500 My (Part 3). It is a key area for understanding species biogeography because of its important environmental gradients and topography (Part 4). The northern boundary of the Southern Ocean is not clearly delimited by any continents, so the extent to the north is difficult to delineate. It fluctuates with the position of frontal zones, themselves being far more complex in their structure than initially described. Scenarios of climate change indicate that the Sub-Tropical and Sub-Antarctic Fronts may shift further south, thus reducing the extent of the area south of the Antarctic Polar Front. This Atlas is released at a time when signs of important changes are being observed (Part 9), and when concerns about conservation of the Southern Ocean are increasing (e.g. see proposals for Marine Protected Areas, Chapter 9.4). The information provided in the Atlas will be useful as a baseline against which to assess future change, and also as a first step for developing a dynamic online version (Part 11), which will support a dataset for biogeographic modelling in a pro-active fashion for good management.

2. Data compilation and analysis

The data team associated with the Atlas provided experts with data that were mostly available at the level of occurrence only (i.e. presence-only data; Chapter 2.1). The data-cleaning process relied on the specialists working on each chapter; they completed the database, verified samples and species records and updated the taxonomy. The data used in this Atlas were primarily drawn from SCAR-MarBIN and ANTABIF (Antarctic Biodiversity Information Facility; www.biodiversity.aq); a few other sources were also used and made available for the first time. Parts of these distribution records were taken from pre-existing Antarctic databases, including those for molluscs (Griffiths et al. 2003), echinoids (David et al. 2005), amphipods (De Broyer et al. 2007), fish (CCAMLR), and whales (IWC), which integrate historic data. They were updated with new records from recent cruises, information from specimens housed in museum collections, data from recent literature and from the CAML campaigns. Most additional data that were compiled by the chapter authors have now been included in ANTABIF by the data manager. The complete expert-validated database, including records to latitude 40°S, represents 1.07 million occurrence records for 9,064 validated species from about 434,000 distinct sampling locations.

2.1. Spatial and temporal heterogeneity in taxa records

Chapter 2.2, covering “Data distribution: Patterns and implications”, clearly shows where the database is lacking information for some geographic areas (Map 1). These are in regions with high summer sea ice concentrations and/or an absence of scientific bases that are regularly supplied by ships; hence, transects in these regions result from dedicated cruises only and are therefore less frequent. In the portion of the Southern Ocean facing Marie Byrd Land, there are no national bases or islands, explaining why top predators, for example, are also poorly represented in this section despite their ability to cover long distances. As another illustration of this, benthic records are lacking for the Amundsen Sea and parts of the Bellingshausen Sea and most of the deep sea. At the opposite bathymetric extreme is the Antarctic intertidal zone which, until recently, was considered to be virtually devoid of life.

We have different levels of spatial knowledge for different taxa. The vast majority of samples from all taxa come from the top 500 m of the water column. Known hotspots reflect logistical routes and the location of national programs (Bushnell, 2003); echinoids (David et al. 2005), amphipods (De Broyer et al. 2007), fish (CCAMLR) and whales (IWC) for the Southern Ocean. These experts identified the substantial amount of specimens collected, and revisited, with morphological and molecular techniques, the systematic classification of different taxa, in some cases providing new phylogenies.

The level of information decreases as we move from the epipelagic to the mesopelagic, bathypelagic and deeper layers. For birds and mammals (Part 8), there are also some limitations when using sightings to infer their distribution; however, the use of tracking devices may alleviate this. As a consequence, the region bordered by 100°W and 150°W and south of 60°S is less densely populated by the records shown in Map 1.

2.2. Numerical approach, including modelling, used for mapping

The Atlas provided new ideas for exploring marine biogeography. We followed four types of approaches:

- a taxonomic approach based on mapping species presence only for benthos (Part 5), pelagic and sea-ice organisms (Part 6), fish (Part 7) and bird and mammals (Part 8);
- a physiognomic approach used for the abiotic regionalisation that can be considered as a proxy of species assemblages. We provided a benthic regional classification (Chapter 10.1) and a pelagic regionalisation (Chapter 10.2);
- a mixed approach that includes taxonomic, ecological and physiognomic data as it was used for zooplankton from the Continuous Plankton Recorder (Chapter 10.3) or, at regional scales, for fish (Koubbi et al. 2011a,b);
- a phylogeographic approach (Chapters 10.5, 10.6 and 10.7).

As a first step, it was important to update our knowledge on the Southern Ocean abiotic environment (Part 4) to delineate benthic regions based on geo-morphological features (Chapter 10.1), and pelagic regions based on sea-ice, water masses, currents, fronts or biogeochemical regions (Chapter 10.2). This information can help to define biogeographic regions, with the hypothesis that the abiotic environment can be used as a proxy for pelagic or benthic biodiversity when communities are not totally described. The environmental envelope of oceanographic and biogeochemical regions, such as defined by Longhurst (2007) for the world ocean or pelagic regions described in this Atlas (Chapter 10.2), were used to model the consequences of climate change on the extent of these provinces or bioregions (Chapters 9.1 and 9.2). Other promising approaches such as PHYSAT (Chapter 6.2) were used to estimate assemblages of phytoplankton, based on the analysis of remote sensing images. This allowed us to visualise monthly changes that occurred in the Southern Ocean.

The mixed approach consisted of modelling the potential preferred habitats of species and assemblages based on mathematical relationships between presence or absence of species and environmental factors.
Key species can be abundant species with important roles in ecosystem function, such as Antarctic krill. Alternatively, rare species, for which taxonomic expertise is essential, often live in specific or unique environmental conditions and might be important for genetic diversity and ecosystem resilience. However, there has been much speculation about the representativeness of single species, especially within species complexes such as cryptic species. Cryptic species complexes consist of closely related species with incomplete morphological differentiation, rather than distinct species. In the first case species can be locally very abundant but may occur only rarely. In the second case species are widespread but have low abundance per area. In both cases, rare species can contribute to a biogeographic classification but only if they can be associated with one specific biogeographic province or assembly and are largely absent in others.

Given the high numbers of species complexes discovered, it has become clear that biodiversity in the Antarctic has been severely underestimated. Cryptic species complexes consist of closely related species with incomplete morphological differentiation, rather than distinct species. In the first case species can be locally very abundant but may occur only rarely. In the second case species are widespread but have low abundance per area. In both cases, rare species can contribute to a biogeographic classification but only if they can be associated with one specific biogeographic province or assembly and are largely absent in others.

For the benthos, particularly those species with a large spatial distribution range, there appears to be a range of important physical environmental factors. The biogeographic and species distribution patterns of benthos are largely driven by the Antarctic Circumpolar Current and the timing of past continental connectivity. The general patterns of relatively high species endemism and biogeographic isolation of the waters south of the Polar Front hold true for all groups. Depth is very often a key parameter in defining the range and distribution patterns of species; e.g., echinoids (Chapter 5.26). Most of our knowledge of the deep sea is restricted to the Weddell and Scotia Seas (Chapter 5.29). For species with more restricted spatial distribution patterns, sea surface temperature is another critical parameter, as is sea ice cover (of particular importance for strictly Antarctic shallow water species). At a more local scale the distributions of many benthic taxa are dictated by substrate type; e.g., the association of infauna with muddy sediments and sessile suspension feeders with hard substrates.
Conclusions

Several authors since Hedgpeth (1969) have attempted to summarise the general biogeographic patterns for the Southern Ocean benthos. Whole community studies are rare and only possible at the level of expert best knowledge (interpretation of data) and not by statistical methods (Chapter 5.28), therefore most biogeographic studies have focussed on individual taxonomic groups. Bivalvia (Chapter 5.11), Bryozoa (Cheilostomata and Cyclostomata; Chapter 5.23), Pycnoclonoida (Chapter 5.14), Porifera (Chapter 5.5), Ascidacea (Chapter 5.27), Echinoidae (Chapter 5.26) and Tanaidacea (Chapter 5.19) show the Southern Ocean as a “single functional unit” with no evidence for a biogeographical split between East and West Antarctica, as previously described by different authors (Griffiths et al. 2009, Griffiths et al. 2011, Downey et al. 2012, Primo & Vázquez 2007, Pierrat et al. 2013). Gastropoda (Chapter 5.10), Actiniania (Chapter 5.6) and Amphipoda (Chapter 5.17), in contrast, display a level of differentiation between East and West, as described by Griffiths et al. (2009) and Rodriguez et al. (2007) (Map 2).

Biogeographical analyses indicate stronger faunal links between Antarctica and South America, than between Antarctica and South Africa, Southern Australia or New Zealand. Despite these general patterns, the biogeographical regions and connectivity in the Southern Ocean differ depending upon the class of animals and types of environment being considered. Recent results attest that oceanic islands are not only sinks for biodiversity (the flux is from the continent to the islands), but also sources for a reverse journey and colonisation toward the continents (Bellemain & Ricklefs 2008). The Southern Ocean holds a large number of archipelagos and islands of various sizes and origins. As such, it offers interesting possibilities to explore models of evolutionary radiation and extinction. Insularity is known to improve the probability of emergence of new species and to initiate high endemity (Presgraves & Glor 2010).

The biogeographic significance of the sub-Antarctic Islands is more variable between different taxonomic groups and probably reflects their evolutionary and life history and dispersal capabilities. However, the proximity of some sub-Antarctic Islands to the strong current system around the Polar Front has resulted in extreme long-distance dispersal in some species with very low dispersal potential (Leese et al. 2010; Chapter 10.7). For the Porifera, Cyclostomata, Echinoidae and partly Amphipoda, South Georgia represents a true transitional zone between the Magellanic region and the Antarctic (Downey et al. 2012, Griffiths et al. 2009, Pierrat et al. 2013; Chapter 5.7). In other groups (Pycnocordella, Ascidacea, Bivalvia, Gastropoda, Cheilostomata) South Georgia displays an Antarctic characteristic (Griffiths et al. 2011, Griffiths et al. 2009, Primo & Vázquez 2007). The sub-Antarctic Islands of the Southern Indian Ocean (Bouvet Island, Prince Edward Islands, Crozet Islands, Kerguelen Islands and Heard Island) have varying degrees of faunal similarity with South America and Antarctica and the other sub-Antarctic Islands and sparsely sampled Bouvet Island sits south of the mean position of the Polar Front and for the Pycnocordella, Actiniania, Porifera and Bivalvia it groups with Antarctica, for the Cheilostomata with South America, and for the Cyclostomata with South Africa (Griffiths et al. 2009, Rodriguez et al. 2012). The other South Indian Ocean islands group with South America for the Bryozoa, Echinoidae and Bivalvia, and as a separate distinct group for the Pycnocordella and Gastropoda (Griffiths et al. 2009, Pierrat et al. 2013). For the Porifera the islands of Kerguelen and Heard have Antarctic characteristics (Downey et al. 2012), but in the Amphipoda they share many species with Macquarie Island (Chapter 5.7). The sub-Antarctic Islands of New Zealand exhibit strong affinities with the New Zealand shelf (mostly South Island), and share very little fauna with the other study regions (Griffiths et al. 2009, Griffiths et al. 2011, Downey et al. 2012, Chapter 5.7).

4.2. General pelagic biogeographic patterns

Planktonic and pelagic patterns are largely driven by the highly structured water masses and currents of the Southern Ocean, coupled with its extreme seasonality and seafloor characteristics (Chapter 5.7). Sampling in the water column is not uniform because the majority of samples come from the epipelagic zone, which includes the water column from the surface to 200 m. Our understanding of these upper waters is enhanced by remote sensing techniques, underway oceanographic studies and oceanographic data collected by top predators (Guinet et al. 2012). The distribution of sea birds and marine mammals is primarily explained by that of their prey and their diving capacity as air-breathing predators. For seabirds and seals, the proximity of suitable land habitats to breed represents an additional element that influences their horizontal distribution.

Latitudinal gradients

As for benthos, frontal zones and bathymetry act as biogeographic barriers that segregate faunal assemblages or induce productive areas, enhancing primary productivity via fertilisation by nutrients (e.g. iron).

Historically, the Sub-Tropical Front and the Antarctic Polar Front were recognized as the main biogeographic barriers marking the limit between the Southern Ocean and the subtropical zones of the Indian, Atlantic and Pacific oceans. The results of the Continuous Plankton Recorder (Chapter 10.3) and the distribution of pelagic fish (Part 7) show that the Sub-Antarctic Front is certainly the major biogeographic boundary in the Southern Ocean, confirming the results of Hunt & Hosie (2003, 2005, 2006) based on a single transect of CPR and the results of Koubbi (1993) on fish larvae assemblages and Koubbi et al. (2011b) on mesopelagic fish assemblages.

The region between the Seasonal Ice Zone and the Sub-Antarctic Front is relatively uniform, with some variation between the perennial open ocean zone and the Polar Frontal Zone. Each of the biogeographic bands has distinct species compositions. However, differences between zones are based more on variation in the proportion of species abundances than complete differences in species. While there are consistent biogeographic bands of zooplankton assemblages around Antarctica (as shown in Chapter 10.3), the BRT modelling of Oithona similis (Pinkerton et al. 2010) and the CPR Atlas (McLeod et al. 2010) show some longitudinal variation. The BRT models show consistent hotspots of O. similis abundance. Similar results are shown for mesopelagic fish (Part 7) and euphausiids (Chapter 6.9), where latitudinal zonation of species or assemblages is observed but also changes according to basins or particular oceanographic or bathymetric features. Not all fronts act the same way, depending on species origin. The sub-tropical mesopelagic fish species seemed to be mainly limited to the south by the mean position of the Polar Front, whereas the Antarctic species seemed to have their northern extent mainly linked to the Sub-Antarctic Front. However, interpretations are mainly driven from knowledge on the 0–400 m upper layer of the water column and few surveys have investigated deeper layers where some species might be found northward. Koubbi et al. (2011b) showed how the predicted assemblages of the mesopelagic fish in the Indian part of the Southern Ocean are influenced by the different branches of the major fronts, and also by the complex oceanography linked to the Kerguelen Plateau and its troughs influencing the Antarctic Circumpolar Current. This study, along with those from the CPR,
showed the importance of the Southern Boundary for separating permanently open ocean from the more southern species. Top predators are also known to track frontal zones, the sea ice edge, eddies and polynyas for foraging (Bost et al. 2009).

Geomorphology is also important for the Southern Ocean pelagic species, as some pelagic species are linked to shelves and shelf slopes. Euphausia crystallorophias, the ice krill, is known to occur only in the very cold neritic waters of the continental shelf, whereas Euphausia superba, the Antarctic krill, is mainly found in waters north of the continental shelf (Chapter 6.9). Pleurogramma antarcticum, the antarctic silverfish, is the common pelagic fish on the Antarctic shelf. However, many fish have pelagic larval stages and juveniles such as the other notothenioids.

Distance to the coast, and islands, also plays an important role in the pelagic system; e.g. some copepods are endemic to nearshore habitats. The role of islands is extremely important for the life cycle of diverse species and the productivity of the pelagic zone. Island mass effects enable retention and support higher productivity than that observed in the high nutrient - low chlorophyll areas of the oceanic zone. The significance of this increased retention of phytoplankton biomass was demonstrated for different larval phases of fish around South Georgia and Kerguelen (Koubbi et al. 2009). Although not currently known, we can speculate that similar conclusions can be developed for some seamounts that are recognized as hotspots of biodiversity (Morato et al. 2010).

Seasonal ice zone

The seasonal ice zone is a major feature influencing biogeographical patterns. By the end of the winter approximately 1/2 of the Southern Ocean is covered by sea ice, yet at the height of summer coverage has reduced to less than 10%. The growth and retreat of sea ice, coupled with the extreme seasonality in the Southern Ocean, therefore act as major environmental forcings. Although many locations in Antarctica are currently experiencing little or no change in sea ice extent, complex ice-albedo feedback mechanisms mean that sea ice will both influence and be influenced by the climate. Unseasonal reductions (or increases) in the thickness and area and irregularity in its growth cycle, and incidence of polynyas will affect primary production and carbon flux, thereby shaping the biogeography of pelagic and benthic species (Chapter 6.10). Nearshore benthic community composition is sensitive to snow- and ice-covered, which mediate the light reaching the sea floor. Even minor changes in the timing of sea ice retreat can have significant implications for benthic community composition, depending on the timing of that retreat within the annual solar cycle (Chapter 4; Clark et al. 2013).

The algae are adapted to low light conditions and can be a food source for some herbivorous species during times of winter scarcity. The ice algae that are released near the end of spring can either slough off in patches that sink to the benthos or become inocula for ice-edge phytoplankton blooms. Ice algae that sink to the benthos possibly trigger increased grazing and breeding activity in the benthos, as has been shown for the Arctic (Morata et al. 2011). In the pelagic zone, the increased light penetration that could result from decreased ice thickness might alter both composition and abundance of the phytoplankton bloom. This would have consequences for the distribution of many grazing species, including Antarctic krill. Understanding how reduction in krill biomass or retreat in their range will affect top predators requires a mix of modelling and observational studies. Additionally, species such as crabeater seals, emperor penguins, Aptenodytes forsteri, which rely on sea ice as a platform to complete their life cycle, could be negatively affected by sea ice reductions due to decreased availability of breeding and birthing sites.

In the seasonal ice zone, polynyas are areas of open water surrounded by sea ice. They can be regions of high productivity, particularly in early spring when the absence of an ice cover means that sufficient light can get to the water column and trigger earlier blooms of phytoplankton. Some polynyas occur quite predictably at the same time and place each year, making them regions of enhanced secondary production. Grazing rates of copepods can be higher in polynyas than under sea ice, resulting in increased fecundity (Lee et al. 2013). Increases in the biomass of lower trophic level organisms make polynya vital elements of the polar marine ecosystem, and are attractive foraging grounds for many predator species (e.g. Raymond et al. 2014). Changes in ice conditions lead to changes in the distribution and persistence of polynyas. Climatically driven collapse of the Larsen A and B ice shelves on the Antarctic Peninsula have opened up new polynyas that are supporting increases in primary productivity in the region (Cape et al. 2014). This is likely to lead to changes in the regional marine ecosystem, as both the pelagic and benthic real estate could benefit from the increased ice cover.

4.3. What are the biogeographic corridors?

A key biogeographical question is whether the Antarctic is removed, or simply remote, from potential colonists. There are a number of mechanisms for potential change in species composition due to the present day, or potential isolation. Some species are largely isolated from the rest of the Southern Ocean, whereas other species are distributed both north and south of the Polar Front. The concept of biogeographical corridors has been developed to understand the dispersal of species across the Southern Ocean. Biogeographical corridors are defined as pathways that facilitate the dispersal of species between regions, and can be both natural and anthropogenic. Examples of natural biogeographical corridors include seasons, ocean currents, wind-driven currents, and biological dispersal agents such as marine mammals and birds. Human activities, such as shipping and fishing, can also act as biogeographical corridors, facilitating the dispersal of species between regions.
Conclusions

Chapter 2 highlighted the gaps in our spatial knowledge, for some regions of the Southern Ocean, in the meso- and bathypelagic zone and in the deep environment (Chapters 5.29 and 5.30). Life under ice-shelves is certainly another gap in our knowledge, as demonstrated when the Larsen ice sheets collapsed. Scientific knowledge is also largely limited temporally to the spring and summer seasons. Winter is definitely one of the remaining frontiers to be explored because of the dominance of sea ice during that time (Part 4 and Chapter 6.11), and because of extreme weather conditions in the open ocean. For winter, scientific data are limited but not absent; fisheries and national programmes collect information, while recent developments in geolocation technology allow to track top predators during their long and complex journeys. Further, modelling will help to test hypotheses that are generated from the in situ results and driving new sampling strategies. Also concepts and meta-analyses focussing on trophic and other interactions might help to test the performance such as consumption, production, and remineralisation must be assumed to be species-specific.

Another major tool to detect climate-induced changes in ecosystem functioning and separating these from background variation is ecological long-term observations and time-series analyses (Rintoul et al. 2012), which might be all the more sensitive to changes, depending on how detailed the available information is at the organismic level. In this context, monitoring is essential on shorter timescales and in larger numbers for the lineages inside a species. Using high-resolution molecular markers can provide more detailed feedback about the state of a system than is possible with presence-only data at the level of species. The latitudinal shifts of species distributions that are anticipated as a response to ongoing climate change may be expected to happen on shorter timescales and in larger numbers for the lineages inside a species. This may compensate at least in part for the problem of the short baseline of long-term studies that have been initiated in recent years.

In the Southern Ocean, single locus, mitochondrial markers have featured prominently in the first phase of molecular research. New methods are on the horizon that may help to overcome inherent biases in our molecular tools that would impede future progress. None of the traditional model organisms studied so far are polar, so, for some time to come, the vast majority of molecular studies in the Southern Ocean will be carried out without the opportunity of resorting to fully annotated databases of close relatives to guide marker development or direct future research. For this reason, the promise of sequencing entire genomes is now greater, and the generation of sequences both faster and cheaper is particularly relevant to future work in the Southern Ocean. Firstly, higher throughput will allow larger sample sizes to be used to measure molecular studies less assumption-driven and more reliable, more markers will become available from unknown genomes, thus reducing the dependency on single markers with potentially idiosyncratic representations of the evolutionary past of the organism under study. Both effects combined will help to make the sampled animals more representative of the real population, as well as the markers studied more representative of the genome. This will reduce the effect of sampling bias with regard to both the sampled population and the sampled genome.

Preserving and analysing RNA rather than DNA offers the unique opportunity to study which fraction of genes are actually expressed and how they are regulated during their long migrations to reveal their wintering habitats, a supposedly undoable task only a decade ago. Progress in technology also enables the collection of additional information on the activity of these genes and of the variability of the ocean during the season of sampling.

It is clear from this Atlas that large changes to species’ distributions can be expected as the climate changes (Chapters 9.1, 9.2 and 9.3). The Southern Ocean will be affected on local and regional scales, and overall, as it is a widely connected system. We can expect large-scale extinctions over time (soon after stressed populations), as southward shifts of biogeographic regions or ecoregions will reduce species’ habitats. High future rates of species turnover in the Southern Ocean are also predicted with climate change (Cheung et al. 2009). Gutt et al. (2012) stressed the need for predictive models to study the effect of environmental changes on both benthic and pelagic systems in order to inform policy and decision making (Hueyttmann, 2012). However, we need systematic sampling and spatial coverage of both biological data and ecological parameters. Rintoul et al. (2014) hypothesised that the consequences of climate change in the Southern Ocean ecosystem. For example, top predators that depend on frontal areas for foraging might have to move to reach their feeding grounds as the frontal regions shift to higher latitudes (Péron et al. 2012).

In this changing environment, another Census of Antarctic Marine Life will be necessary soon. In the meantime new surveys should take place in unknown or less-studied environments, using standardised methods, so we can assess differences in the presence of species, and evaluate any changes in their abundances and in their ecological roles. Modelling provides an excellent option for assessing the performance of sampling methods, criticizing existing results, and developing new sampling strategies. Further, modelling can help to test hypotheses that are generated from the in situ biogeographic data. Based on biogeographic information, the environmental envelope models need to be further developed and completed by dynamic elements (Gutt et al. 2012b). All meta-analyses focused on meta-trophic and other interactions (Chapter 5.31) demand detailed knowledge, since corresponding life performance such as consumption, production, and remineralisation must be assumed to be species-specific.

5.2. Unknown and changing environments

Census of Antarctic Marine Life will be necessary soon. In the meantime new surveys should take place in unknown or less-studied environments, using standardised methods, so we can assess differences in the presence of species, and evaluate any changes in their abundances and in their ecological roles. Modelling provides an excellent option for assessing the performance of sampling methods, criticizing existing results, and developing new sampling strategies. Further, modelling can help to test hypotheses that are generated from the in situ biogeographic data. Based on biogeographic information, the environmental envelope models need to be further developed and completed by dynamic elements (Gutt et al. 2012b). All meta-analyses focused on meta-trophic and other interactions (Chapter 5.31) demand detailed knowledge, since corresponding life performance such as consumption, production, and remineralisation must be assumed to be species-specific.

Another major tool to detect climate-induced changes in ecosystem functioning and separating these from background variation is ecological long-term observations and time-series analyses (Rintoul et al. 2012), which might be all the more sensitive to changes, depending on how detailed the available information is at the organismic level. In this context, monitoring is essential on shorter timescales and in larger numbers for the lineages inside a species. Using high-resolution molecular markers can provide more detailed feedback about the state of a system than is possible with presence-only data at the level of species. The latitudinal shifts of species distributions that are anticipated as a response to ongoing climate change may be expected to happen on shorter timescales and in larger numbers for the lineages inside a species. This may compensate at least in part for the problem of the short baseline of long-term studies that have been initiated in recent years.

5.3. New molecular methods

At the first of an ANT-ERA’s levels of biological organisation: the physiology of organism. The scenario includes the biomolecular processes. Biogeographic information helps to identify in situ species-specific tolerance limits, as well as thresholds, and to verify corresponding results from experiments and ‘omic’ analyses. Also the second level, covering species and populations, requires knowledge on ill environmental demands to identify species traits, which can be deduced from distribution patterns of species and environmental variables. The third level of ecosystems depends on all the approaches mentioned so far.

The overarching aim is to better understanding Southern Ocean ecosystem functioning, enabling us to assess the future of Antarctic biota and ecosystem services in a changing environment, in the form of a continuation of the Antarctic Climate and the Environment report (Turner et al. 2009) and its regular up-dates (e.g., Turner et al. 2013).

5.4. Conservation

The data compiled in this Atlas are a valuable resource for the development of conservation policy based on the best available scientific information and approaches (Chapter 9.4.). Depending on the extent of its coverage in a given region, the biogeographic data can be used to derive conservation measures to achieve the objective of protecting representative examples of marine ecosystems, biodiversity and habitats (as defined by CCAMLR Convention). Further, the presence-only data at the species level provide the only information on the extent of previous sampling may help to guide future research and monitoring, and to focus scientific effort in areas that may be under threat from human activities, but where knowledge is limited.

In addition to informing the design of new proposals for conservation policy and spatial protection, the provision of up-to-date biogeographic information is critical for supporting ongoing management. In particular, the CCAMLR requirements for research and monitoring within established MPAs will be enhanced by the availability of baseline data. Existing hard data can also be used to identify future survey requirements, including defining candidate monitoring areas. However, it is important to recognise that different regions or protected areas may have different requirements for research and monitoring, depending on their particular characteristics or management provisions. Designated MPAs should be periodically reviewed to evaluate whether their objectives are still relevant, to assess the impacts of activities upon these objectives, to update plans for research and monitoring, and to develop proposals for new or any adapted management measures if required. All of these activities would benefit from readily available biogeographic data (e.g. globally provided online and with associated metadata).

6. Conclusion

This Atlas represents the culmination of nearly a decade long international effort and has highlighted a need to consider taxa on a case-by-case basis, depending on the environmental envelope that prescribes their presence, such as bathymetric and oceanographic ranges. The compilation of biogeographic data as in this Atlas in information networks like SCAR-MarBIn/ANTABIF and other databases or portals, provides a fundamental basis to reduce future research efforts by nominating key taxa instead of the full biogeographic information of a region for various purposes in applied or fundamental science. However, we need to include taxa-related characteristics such as reproductive strategy, life history and evolutionary history to understand how environmental changes have occurred and will modify species distribution. For many groups we are yet to acquire the amount of high-resolution, georeferenced knowledge needed to draw meaningful conclusions regarding biogeographic provinces. However, the advent of new environmental data, species or assemblages modelling and molecular markers offers new possibilities for building such knowledge that may be acquired by new data collection approaches. The online dynamic Biogeographic Atlas (Chapter 11) will be a living resource that will increase in functionality and data over time and will allow the continued effort and collaboration of the network of Antarctic scientists who contributed to the printed version.

References

Bost, C. A., Cottte, C., Baleille, F., Cherek, Y., Charrassin, J. B., Guinet, C., Ainley, 474


THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN

Scope

Biogeographic information is of fundamental importance for discovering marine biodiversity hotspots, detecting and understanding impacts of environmental changes, predicting future distributions, monitoring biodiversity, or supporting conservation and sustainable management strategies.

The recent extensive exploration and assessment of biodiversity by the Census of Antarctic Marine Life (CAML), and the intense compilation and validation efforts of Southern Ocean biogeographic data by the SCAR Marine Biodiversity Information Network (SCAR-MarBIN) provided a unique opportunity to assess and synthesise the current knowledge on Southern Ocean biogeography.

The scope of the Biogeographic Atlas of the Southern Ocean is to present a concise synopsis of the present state of knowledge of the distributional patterns of the major benthic and pelagic taxa and of the key communities, in the light of biotic and abiotic factors operating within an evolutionary framework. Each chapter has been written by the most pertinent experts in their field, relying on vastly improved occurrence datasets from recent decades, as well as on new insights provided by molecular and phylogeographic approaches, and new methods of analysis, visualisation, modelling and prediction of biogeographic distributions.

A dynamic online version of the Biogeographic Atlas will be hosted on www.biodiversity.aq.

The Census of Antarctic Marine Life (CAML)

CAML (www.caml.aq) was a 5-year project that aimed at assessing the nature, distribution and abundance of all living organisms of the Southern Ocean. In this time of environmental change, CAML provided a comprehensive baseline information on the Antarctic marine biodiversity as a sound benchmark against which future change can reliably be assessed. CAML was initiated in 2005 as the regional Antarctic project of the worldwide programme Census of Marine Life (2000-2010) and was the most important biology project of the International Polar Year 2007-2009.

The SCAR Marine Biodiversity Information Network (SCAR-MarBIN)

In close connection with CAML, SCAR-MarBIN (www.scarmarbin.be, integrated into www.biodiversity.aq) compiled and managed the historic, current and new information (i.a. generated by CAML on Antarctic marine biodiversity by establishing and supporting a distributed system of interoperable databases, forming the SCAR regional node of the Ocean Biodiversity Information System (OBIS, www.Obis.org), under the aegis of SCAR (Scientific Committee on Antarctic Research, www.scar.org). SCAR-MarBIN established a comprehensive register of Antarctic marine species and, with biodiversity.aq provided free access to more than 2.9 million Antarctic georeferenced biodiversity data, which allowed more than 60 million downloads.

The Editorial Team

Claude DE BROYER is a marine biologist at the Royal Belgian Institute of Natural Sciences in Brussels. His research interests cover structural and functional biodiversity and biogeography of crustaceans, and polar and deep sea benthic ecology. Active promoter of CAML and ANDEEP, he is the initiator of the SCAR Marine Biodiversity Information Network (SCAR-MarBIN). He took part to 19 polar expeditions.

Huw GRIFFITHS is a marine Biogeographer at the British Antarctic Survey. He created and manages SOMBASE, the Southern Ocean Molluscs Database. His interests include large scale biogeographic and ecological patterns in space and time. His focus has been on molluscs, bryozoans, sponges and pycnogonids as model groups to investigate trends at high southern latitudes.

Cédric d’UDÈKEM d’AOCC is a research scientist at the Royal Belgian Institute of Natural Sciences, Brussels. His main research interest is the systematics of amphipod crustaceans, especially of polar species and taxonomy of decapod crustaceans. He took part to 2 scientific expeditions to Antarctica on board of the Polaris and to several sampling campaigns in Norway and Svalbard.

Bruno DANIS is an Associate Professor at the Université Libre de Bruxelles, where his research focuses on polar biodiversity. Former coordinator of the scarmarbin and be and antarctica projects, he is a leading member of several international committees, such as OBIS or the SCAR Expert Group on Antarctic Biodiversity Informatics. He has published papers in various fields, including ecotoxicology, physiology, biodiversity informatics, polar biodiversity or information science.

Susie GRANT is a marine biogeographer at the British Antarctic Survey. Her work is focused on the design and implementation of marine protected areas, particularly through the use of biogeographic information in systematic conservation planning.

Christopher HELD is a Senior Research Scientist at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven. He is a specialist in molecular systematics and phylogeny of Antarctic crustaceans, especially isopods.

Falk HUETTMANN is a ‘digital naturalist’ he works on three poles (Arctic, Antarctic and India-Tibet Himalaya) and elsewhere (marine, terrestrial and atmospheric). He is based with the university of Alaska-Fairbanks (UAQ) and focuses primarily on effective conservation questions engaging predictions and open access data.