CHAPTER 5.21. DECAPODA: CRABS AND LOBSTERS.

THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN


The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosystem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems).

Edited by:
Claude De Broyer (Royal Belgian Institute of Natural Sciences, Brussels)
Philippe Koubbi (Université Pierre et Marie Curie, Paris)
Huw Griffiths (British Antarctic Survey, Cambridge)
Ben Raymond (Australian Antarctic Division, Hobart)
Cédric d’Udekem d’Acoz (Royal Belgian Institute of Natural Sciences, Brussels)
Anton Van de Putte (Royal Belgian Institute of Natural Sciences, Brussels)
Bruno Danis (Université Libre de Bruxelles, Brussels)
Bruno David (Université de Bourgogne, Dijon)
Susie Grant (British Antarctic Survey, Cambridge)
Julian Gutt (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven)
Christoph Held (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven)
Graham Hosie (Australian Antarctic Division, Hobart)
Falk Huettmann (University of Alaska, Fairbanks)
Alix Post (Geoscience Australia, Canberra)
Yan Ropert-Coudert (Institut Pluridisciplinaire Hubert Currien, Strasbourg)

Published by:
The Scientific Committee on Antarctic Research, Scott Polar Research Institute, Lensfield Road, Cambridge, CB2 1ER, United Kingdom (www.scar.org).

Published funded by:
- The Census of Marine Life (Albert P. Sloan Foundation, New York)
- The TOTAL Foundation, Paris.

The “Biogeographic Atlas of the Southern Ocean” shared the Cosmos Prize awarded to the Census of Marine Life by the International Osaka Expo’90 Commemorative Foundation, Tokyo, Japan.

Publication supported by:
- The Belgian Science Policy (Belspo), through the Belgian Scientific Research Programme on the Antarctic and the “biodiversity.aq” network (SCAR-MarBIN/ANTABIF)
- The Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
- The British Antarctic Survey (BAS), Cambridge, United Kingdom
- The Université Pierre et Marie Curie (UPMC), Paris, France
- The Australian Antarctic Division, Hobart, Australia
- The Scientific Steering Committee of CAML, Michael Stoddart (CAML Administrator) and Victoria Wadley (CAML Project Manager)

Mapping coordination and design: Huw Griffiths (BAS, Cambridge) & Anton Van de Putte (RBINS, Brussels)
Editorial assistance: Henri Robert, Xavier Loréa, Charlotte Havermans, Nicole Moortgat (RBINS, Brussels)
Printed by: Altitude Design, Rue Saint Josse, 15, B-1210 Brussels, Belgium (www.altitude-design.be)
Lay out: Sigrid Camus & Amélie Blaton (Altitude Design, Brussels).
Cover design: Amélie Blaton (Altitude Design, Brussels) and the Editorial Team.
Cover pictures: amphipod crustacean (Epimeria rubrieques De Broyer & Klages, 1991), image © T. Riehl, University of Hamburg; krill (Euphausia superba Dana, 1850), image © V. Siegel, Institute of Sea Fisheries, Hamburg; fish (Chaenocephalus sp.), image © C. d’Udekem d’Acoz, RBINS; emperor penguin (Aptenodytes forsteri) G.R. Gray, 1844), image © C. d’Udekem d’Acoz, RBINS; Humpback whale (Megaptera novaeangliae (Bowleski, 1781)), image © L. Kindermann, AWI.

Online dynamic version:
A dynamic online version of the Biogeographic Atlas is available on the SCAR-MarBin / AntaBIF portal : atlas.biodiversity.aq.

Recommended citation:
For the volume:

For individual chapter:

1. Introduction

Crabs and lobsters (Brachyura, Anomura and Nephropidae) are relict decapod crustaceans and form a relatively unknown and understudied component of the Southern Ocean benthos. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean with 12 species found south of 60°S. All records are restricted to waters warmer than 0°C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW) (Map 1). This cold temperature restricted distribution has previously been explained by problems with haemolymph Mg²⁺ regulation at cold temperatures by the relict decapods (Frederich et al. 2000). The most widely reported and abundant group of crabs or lobsters from the Southern Ocean are the Lithodidae (stone or king crabs). In recent years, the ‘crab invasion’ story has become a metaphor for climate change in the Southern Ocean, often repeatedly the scientific literature and the media.

The available decapod fossil record reveals large gaps in knowledge during part of the Cretaceous due to a lack of suitable marine deposits in Antarctica. There are many controls on the preservation of decapods which make interpreting their evolutionary history difficult and a large percentage (99.7%) of the Antarctic continent is covered by snow and ice (Convey 2013). Although there are marine fossil sites for the Oligocene through to the Miocene there have been few records from the Pleistocene (Reiss 1974). Only two families from the decapod fossil record exist south of 60°S at the present day, the Nephropidae and the Galatheidae (Griffiths et al. 2013). Both are known from single living records found in deep water. The global fossil history of Lithodidae is extremely poor, consisting of only two species of Lithodidae date back to the Miocene (Feldmann 1998, Karasawa & Ohara 2012). The earliest records of Recent Southern Ocean crab and lobster species date back to the Challenger expedition with records of Lethodes murrayi and Paralomis aculeata from the Prince Edward Islands in 1873 (Henderson 1885), although records of a crab in Antarctica south of 60°S is the record of the brachyuran crab Halocarcinus planatus from shores of the South Orkney Islands in 1903 (Stebbing 1914). Records of Antarctic Lithodidae date back to an individual of Paralomis birsteinii collected by the RV Eltanin in 1958 from near the Mendeleev Ridge on the Roald Amundsen Shelf (Yaldwyn 1979) and they were not recorded again until 1994 near Peter I Island (Klages et al. 1995). There are a total of nine encounters with Lithodidae recorded from the slope/shelf of Antarctica with the earliest dating back to 1996 (Araná & Retamal 1999). García Rao et al. (2005) suggested that many of the observed distribution patterns of Antarctic lithodids were an artefact of limited sampling rather than representing true distributions. The most recent Southern Ocean species to be described is the lobster Thymopsis takedai (Ahyong et al., 2012) from the South Georgia region. Earlier studies on the biogeography of the SO concentrated on the decapods as a whole (Zarenkov 1968, Gorny 1999, Boschik & Gavio 2005), and as such are dominated by data for the shrimps or groups not found in Antarctic waters and predate most records of crabs south of 60°S. Spisibonov et al. (2006), were among the first to discuss the biogeography of the SO lithodids, concluding that that there is not a single, homogeneous, Antarctic/ sub-Antarctic lithodid fauna, but the species assemblages change from west to east. Hall & Thajte (2011) examined the link between the biogeography of the Lithodidae and seafloor temperature and were the first to quantify the known temperature limits of the SO lithodids, giving examples of cold tolerant and cold intolerant species from the three genera present in the region.

2. Distribution patterns

To date 22 species of crabs and lobsters are recorded from the SO. The known distributions of all Recent Lithodidae in the SO are constrained by temperature with no records from areas where water temperatures are lower than 0°C (Map 1).

There are six species of Lithodidae found south of 60°S (Maps 2–7) representing 137 animals from 61 separate locations. Two species of lithodids have only ever been found south of 60°S, N. yaldwyni and P. stevensi (Maps 2 and 3). A single record of Munidopsis albatrossae exists from the slope of the Antarctic Peninsula in the Bellingshausen Sea (Map 7). The Brachyrhuyra are represented by three species south of 60°S. A single record of H. planatus is known from the South Orkney Islands (Stebbing 1914). Most records of this species come from South America and the sub-Antarctic (Map 8). Two further species of Brachyura have been recorded from the Southern Ocean, Rochinia gracilipes (usually found in South American waters) and Hyas araneus (a North Atlantic species) (De Melo 1995, Tavares & De Melo 2004) (Map 8). None of these brachyuran species have been collected in the region since. Other species with records south of 60°S are an undescribed Kiwa sp. (Map 8), associated with warm temperatures prevailing at hydrothermal vents, and the lobster Thymopsis nilenta from the deep sea, but in both cases samples were taken from the Scotia Arc just south of 60°S, well away from the Antarctic Continental Shelf itself.

There are nine recorded encounters with lithodids (observations or specimens captured) on or near to the Antarctic shelf/slope (>50 km from the 1000 m bathymetric contour). These nine encounters represent 62 individuals from four species (44 Neolithodides yaldwyni, 16 Paralomis birsteinii, 1 Neolithodes capensis and 1 Paralomis stevensi) (Map 2). These records range from 850 m to 1947 m deep and occur from the slope of the Ross Sea north to the West End of the Antarctic Peninsula (64.9°S − 75.5°S & 178.7°W − 64.3°W). No records of lithodids exist for the Antarctic shelf/slope beyond the Ross, Amundsen, and Bellingshausen Seas.

Other SO species restricted to south of the Sub-Antarctic Front or near to the PF include five species of Lithodidae (Lithodes macquarriensis, Paralomis anamene, P. elongata, P. aculeata and Neolithodes yaldwyni (Maps 9–11), one species of Kiwaidae (Map 10) and two species of Nephropidae (Thymopides grobovi and T. nilenta) (Maps 11–12). A further two species of lobster, Thymops takedai and T. birsteinii (Map 13), and two lithodids, Paralomis formosa (Map 14) and P. spinosissima (Map 15) have been found to span the Drake Passage with records in southern South America and South Georgia. None of the species of lobster (Nephropidae) are found near to the Antarctic shelf and at this stage can be considered to be mostly sub-Antarctic in distribution, although this may change with increased deep water sampling.

3. Depth distribution

The majority of species examined in this study (13 out of 21) can be considered to be highly eurybathic, with depth ranges exceeding 1000 m (Griffiths et al. 2013). None of the Brachyura displayed depth ranges greater than ~400 m. The species with the smallest depth ranges included those with only very few records e.g. newly discovered Kiwa sp., known from two locations in the Scotia Sea (Rogers et al. 2012) and P. elongata, which is also recorded from two locations near Bouvet Island. In general, the nephropid lobsters displayed wide depth ranges e.g. T. nilenta with a depth range of 2218 m. The lithodid genus Paralomis had the greatest number of species (5 species) with depth ranges wider than 1000 m. The widest depth range examined belonged to the lithodid N. capensis with a depth range of 2540 m (860–3200 m). A further two species of Lithodidae (M. albatrossae and T. nilenta) from Antarctic water depths south of 60°S) and from the slope/shelf of the Antarctic continent tended to sit within the normal depth range of the species (Griffiths et al. 2013). All Antarctic slope/shelf records, other than a single record for P. birsteinii (1947 m), are within the standard deviation of each species’ depth range. The only known record of P. stevensi from the Antarctic slope/shelf is lacking a depth record at its location (Ahyong, 2010), but bathymetric data suggest an approximate depth of 1000 m, making it the shallowest known record for this species. The single record of M. albatrossae is the only record of this species in the SO and is its shallowest record to date (1920 m).
Decapoda Reptantia Maps 7–12


Map 8. Rochinia gracilipes A. Milne-Edwards, 1875, Hyas araneus (Linnaeus, 1758) and Halicarcinus planatus (Fabricius, 1775).


The deepest records from Antarctic waters belonged to the Kiwa sp. (2400 m), with T. nilenta second deepest at 2068 m. All other Antarctic records are from depths shallower than 2000 m. The brachyurans found south of 60°S have all been found shallower than 100 m.

4. Biogeographic patterns

Since the Lithodidae had far more records available for analysis and a wider latitudinal range than other taxa, Griffiths et al. (2013) performed a biogeographic analysis of only this family. Seafloor water temperature appears to be a major determining factor in the geographic distribution of lithodid crabs in Antarctica as distributions are likely affected by physiological constraints. Six distinct geographic groupings were evident, which may mirror postulated multiple deep-sea radiations of this group outside the North Pacific (Hall & Thatje 2009). The biogeography of the SO lithodids appears to be driven by a combination of seafloor temperature and oceanographic fronts. The most southerly grouping was made up of the continental margin regions south of the Southern Antarctic Circumpolar Current Front (SACCF), the West Antarctic slope/shelf and the Balleny Islands. The waters north of the SACCF but south of the Sub-Antarctic Front included four of the biogeographic groupings. The smallest grouping was that of the Bouvet Island region, which is comprised of a single geographic region with a single endemic species. The widest longitudinal range of any grouping is the southern Indian Ocean Islands, plateaus and Peter I Island group. The third grouping within the Antarctic Circumpolar Current (ACC) was that of Macquarie Island and the Scotia Arc (explained by low numbers of species). The fourth grouping to cross these frontal boundaries is the only one, which connects Antarctic waters to more temperate ones (South Georgia and South America). The fifth grouping is comprised of New Zealand and the sub-Antarctic islands of New Zealand, including 13 species not recorded in any of the other regions.

5. Invasion hypothesis

The relatively recent records of lithodid crabs living on the slopes of West Antarctica, the Ross Sea and in the overdeepen basins on the shelf, has led many to suggest that they are a new and expanding element of these marine communities. The World Conservation Union (IUCN) defines invasive species as “an alien species which becomes established in natural or semi-natural ecosystems or habitat, is an agent of change, and threatens native biological diversity”. Many authors in the past have used the term invasive interchangeably with range extension or polar emergence. It is important to differentiate between introduced non-native species and native taxa, which are expanding or changing their bathymetric or geographic ranges due to the effect of climate change. Other than in the case of Hyas araneus (Tavares & De Melo, 2004), most authors who describe potential “invasion” of the high Antarctic shelf by lithodids are in fact referring to potential range extensions or the theory of polar emergence (Thatje et al. 2005, Aronson et al. 2011, Hall & Thatje 2011, Aronson et al., 2007, Thatje et al. 2008, Garcia Raso et al. et al. 2008, Hall & Thatje 2009, Belchier et al. 2012). However, virtually no scientific work using well-established suitable sampling methods has been conducted in these regions below 1000 m and, to date, no campaign has repeatedly targeted decapod distributions over time in a single geographic
region to assess any density or distributional changes. Griffiths et al. (2013) concluded that there is no current evidence for a modern-day ‘crab invasion’ and recommended an integrated research program of repeated, hypothesis testing sampling of lithodid distributions in Antarctic waters.

Acknowledgements

We acknowledge the contributions of all of the authors of the studies which are comprised in the database. We thank Mandy Tomsett, Oliver Hogg and Helen Peat for access to data and Julian Gutt, Claus-Dieter Hillenbrand, Paul Holland and Claire Waluda for helpful advice. The authors would also like to thank the scientific observers on commercial fishing vessels and the officers, crew and scientists on research vessels involved in the collection of data used in this study. This is CAML contribution # 119.

References


THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN

Scope

Biogeographic information is of fundamental importance for discovering marine biodiversity hotspots, detecting and understanding impacts of environmental changes, predicting future distributions, monitoring biodiversity, or supporting conservation and sustainable management strategies.

The recent extensive exploration and assessment of biodiversity by the Census of Antarctic Marine Life (CAML), and the intense compilation and validation efforts of Southern Ocean biogeographic data by the SCAR Marine Biodiversity Information Network (SCAR-MarBIN) / OBIS provided a unique opportunity to assess and synthesise the current knowledge on Southern Ocean biogeography.

The scope of the Biogeographic Atlas of the Southern Ocean is to present a concise synopsis of the present state of knowledge of the distributional patterns of the major benthic and pelagic taxa and of the key communities, in the light of biotic and abiotic factors operating within an evolutionary framework. Each chapter has been written by the most pertinent experts in their field, relying on vastly improved occurrence datasets from recent decades, as well as on new insights provided by molecular and phyleogeographic approaches, and new methods of analysis, visualisation, modelling and prediction of biogeographic distributions.

A dynamic online version of the Biogeographic Atlas will be hosted on www.biodiversity.aq.

The Census of Antarctic Marine Life (CAML)

CAML (www.caml.ai) was a 5-year project that aimed at assessing the nature, distribution and abundance of all living organisms of the Southern Ocean. In this time of environmental change, CAML provided a comprehensive baseline information on the Antarctic marine biodiversity as a sound benchmark against which future change can reliably be assessed. CAML was initiated in 2005 as the regional Antarctic project of the worldwide programme Census of Marine Life (2000-2010) and was the most important biology project of the international Polar Year 2007-2009.

The SCAR Marine Biodiversity Information Network (SCAR-MarBIN)

In close connection with CAML, SCAR-MarBIN (www.scarmarbin.be, integrated into www.biodiversity.aq) compiled and managed the historic, current and new information (i.a. generated by CAML on Antarctic marine biodiversity by establishing and supporting a distributed system of interoperable databases, forming the regional Regional node of the Obis Marine Biodiversity Information System (OBIS, www.iobis.org), under the aegis of SCAR (Scientific Committee on Antarctic Research, www.scar.org). SCAR-MarBIN established a comprehensive register of Antarctic marine species and, with biodiversity.aq provided free access to more than 2.9 million Antarctic georeferenced biodiversity data, which allowed more than 60 million downloads.

The Editorial Team

Claude DE BROYER is a marine biologist at the Royal Belgian Institute of Natural Sciences in Brussels. His research interests cover structural and functional biodiversity and biogeography of crustaceans, and polar and deep sea benthos ecology. Active promoter of CAML and ANDEEP: he is the initiator of the SCAR Marine Biodiversity Information Network (SCAR-MarBIN). He took part to 19 polar expeditions.

Huw GRIFFITHS is a marine Biogeographer at the British Antarctic Survey. He has studied and managed SMOBASE, the Southern Ocean Mollusk Databse. His interests include large scale biogeographic and ecological patterns in space and time. His focus has been on molluscs, Bryozoa, sponges and pycnogonids as model groups to investigate trends at high southern latitudes.

Cédrick d’UDEKEM d’ACCOR is a research scientist at the Royal Belgian Institute of Natural Sciences, Brussels. His main research interests are the systematics of amphipod crustaceans, especially of polar species and taxonomy of decapod crustaceans. He took part to 2 scientific expeditions to Antarctica on board of the Polarstern and to several sampling campaigns in Norway and Svalbard.

Bruno DIANS is an Associate Professor at the Université Libre de Bruxelles, where he leads and manages SOMBASE, the Southern Ocean Mollusk Database. His interests include large scale biogeographic and ecological patterns in space and time. His focus has been on molluscs, Bryozoa, sponges and pycnogonids as model groups to investigate trends at high southern latitudes.

Susie GRANT is a marine biologist at the British Antarctic Survey. Her work is focused on the design and implementation of marine protected areas, particularly through the use of biogeographic information in systematic conservation planning.

Christoph HELD is a Senior Research Scientist at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven. He is a specialist in molecular systematics and phylogeny of Antarctic crustaceans, especially isopods.

Falk HUETTMANN is a ‘digital naturalist’ he works on three poles (Arctic, Antarctic and Helix-Kush Himalaya) and elsewhere (marine, terrestrial and atmospheric). He is based with the University of Alaska-Fairbanks (UAF) and focuses primarily on effective conservation questions engaging predictions and open access data.

Philippe KOUBBI is professor at the University Pierre et Marie Curie (Paris, France) and a specialist in Antarctic fish ecology and biogeography. He is the Principal Investigator of projects supported by ESE, the French Polar Institute. As a French representative to the CCAMLR Scientific Committee, his main input is on the proposal of Marine Protected Areas. His other field of research is on the ecoregionalisation of the high seas.

Ben RAYMOND is a computational ecologist and exploratory data analyst, working across a variety of Southern Ocean, Antarctic, and wider research projects. His current research interests include system modeling, repurification and marine protected area selection, risk assessment, animal tracking, seabird ecology, complex systems, and remote sensed data analyses.

Anton VAN DE PUTTE works at the Royal Belgian Institute for Natural Sciences (Brussels, Belgium). He is an expert in the ecology and evolution of Antarctic fish and is currently the Science Officer for the Antarctic Biodiversity Portal www.biodiversity.aq. This portal provides free and open access to Antarctic Marine and terrestrial biodiversity of the Antarctic and the Southern Ocean.

Bruno DAVID is CNRS director of research at the laboratory BIOGEOSCIENCES, University of Strasbourg. He is involved in biodiversity, health and more specifically on sea urchins. He authored a book and edited an extensive database on Antarctic echinoderms. He is currently President of the scientific council of the Muséum National d’Histoire Naturelle (Paris), and Deputy Director at the CNRS Institute for Ecology and Environment.

Julian GUTT is a marine ecologist at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, and professor at the Oldenburg University, Germany. He participated in 13 scientific expeditions to the Antarctic and was twice chief scientist on Board Polarstern. He is member of the SCAR committees ACCCE and Ant-EFA (as chief officer). Main foci of his work are: biodiversity, ecosystem functioning and services, response of marine systems to climate change, non-invasive technologies, and outreach.

Graham HOSIE is Principal Research Scientist in zooplankton ecology at the Australian Antarctic Division. He founded the SCAR Southern Ocean Continuous Plankton Recorder Survey and is the Chief Officer of the SCAR Life Sciences Standing Scientific Group. His research interests includes the ecology and biogeography of plankton species and communities, notably their response to environmental changes. He has participated in 17 marine science voyages to Antarctica.

Alexandra POST is a marine geoscientist, with expertise in benthic habitat mapping, sedimentology and geomorphological characterisation of the seafloor. She has worked at Geoscience Australia since 2002, with a primary focus on understanding seafloor processes and habitats on the East Antarctic margin. Most recently she has led work to understand the biophysical environment beneath the Amery Ice Shelf, and to characterise the habitats on the George V Shelf and across following the successful CANA voyages in that region.

Yan ROBERT COUDERT spent 10 years at the Japanese National Institute of Polar Research, where he graduated as a Doctor in Polar Sciences in 2001. Since 2007, he is a permanent researcher at the CNRS in France and the director of a polar research program that examines the ecological responses of Adélie penguins to environmental changes. He is also the secretary of the Expert Group on Birds and Marine Mammals and of the Life Science Group of the Scientific Committee on Antarctic Research.